| Preface | 6 |
---|
| Contents | 11 |
---|
| Conventions | 14 |
---|
| Introduction | 20 |
---|
| 1 Couplings and changes of variables | 22 |
| 2 Three examples of coupling techniques | 38 |
| 3 The founding fathers of optimal transport | 46 |
| Part I Qualitative description of optimal transport | 55 |
---|
| 4 Basic properties | 57 |
| 5 Cyclical monotonicity and Kantorovich duality | 64 |
| 6 The Wasserstein distances | 106 |
| 7 Displacement interpolation | 125 |
| 8 The Monge–Mather shortening principle | 175 |
| 9 Solution of the Monge problem I: Global approach | 216 |
| 10 Solution of the Monge problem II: Local approach | 225 |
| 11 The Jacobian equation | 283 |
| 12 Smoothness | 290 |
| 13 Qualitative picture | 342 |
| Part II Optimal transport and Riemannian geometry | 361 |
---|
| 14 Ricci curvature | 364 |
| 15 Otto calculus | 428 |
| 16 Displacement convexity I | 441 |
| 17 Displacement convexity II | 454 |
| 18 Volume control | 498 |
| 19 Density control and local regularity | 510 |
| 20 Infinitesimal displacement convexity | 530 |
| 21 Isoperimetric-type inequalities | 549 |
| 22 Concentration inequalities | 570 |
| 23 Gradient flows I | 632 |
| 24 Gradient flows II: Qualitative properties | 696 |
| 25 Gradient flows III: Functional inequalities | 721 |
| Part III Synthetic treatment of Ricci curvature | 732 |
---|
| 26 Analytic and synthetic points of view | 735 |
| 27 Convergence of metric-measure spaces | 742 |
| 28 Stability of optimal transport | 772 |
| 29 Weak Ricci curvature bounds I: Definition and Stability | 793 |
| 30 Weak Ricci curvature bounds II: Geometric and analytic properties | 845 |
| Conclusions and open problems | 900 |
---|
| References | 910 |
---|
| List of short statements | 952 |
---|
| List of figures | 960 |
---|
| Index | 962 |