| Preface | 6 |
---|
| Contents | 9 |
---|
| Contributors | 10 |
---|
| 1 Introduction | 12 |
---|
| 2 Heterochronic Control of AFF-1-Mediated Cell-to-Cell Fusion in C. elegans | 15 |
---|
| 2.1 Introduction | 15 |
| 2.2 Heterochronic Genes Regulate the Timing of Developmental Events | 15 |
| 2.3 The Heterochronic Gene lin-29 Determines the Final Fate of the Seam Cells | 16 |
| 2.4 LIN-29 Controls the Terminal Differentiation of the Epidermal Seam Cells | 17 |
| 2.5 AFF-1 Protein Mediates the Terminal Fusion of the Hypodermal Seam Cells | 18 |
| References | 19 |
| 3 Role of SNAREs in Membrane Fusion | 22 |
---|
| 3.1 Introduction | 22 |
| 3.2 Materials and Methods | 24 |
| 3.2.1 Preparation of Lipid Bilayer | 24 |
| 3.2.2 Lipid Membrane on Mica Surface | 25 |
| 3.2.3 Atomic Force Microscopy | 25 |
| 3.2.4 EPC9 Electrophysiological Lipid Bilayer Setup | 25 |
| 3.2.5 Preparation of Lipid Vesicles and SNARE Protein Reconstitutions | 25 |
| 3.2.6 Circular Dichroism Spectroscopy | 26 |
| 3.2.7 Wide-Angle X-Ray Diffraction | 26 |
| 3.3 Discussion | 26 |
| 3.3.1 V-SNARE and t-SNAREs Need to Reside in Opposing Membrane to Appropriately Interact and Establish Continuity Between Those Membranes | 26 |
| 3.3.2 Membrane Curvature Dictate the Size of the SNARE Ring Complex | 29 |
| 3.3.3 Disassembly of the SNARE Complex | 31 |
| 3.3.4 CD Spectroscopy Confirm the Requirement of Membrane for Appropriate t-/v-SNARE Complex Assembly, and that NSF-ATP Alone Can Mediated SNARE Disassembly | 35 |
| 3.3.5 SNAREs Bring Opposing Bilayers Closer, Enabling Calcium Bridging and Membrane Fusion | 38 |
| References | 40 |
| 4 Molecular and Cellular Mechanisms of Mammalian Cell Fusion | 42 |
---|
| 4.1 Introduction | 42 |
| 4.2 Programming Cellular Competence for Fusion | 44 |
| 4.2.1 Cytokines | 44 |
| 4.2.2 DNAX Activating Protein 12 | 45 |
| 4.2.3 Phosphatidylserine | 45 |
| 4.2.4 Calcium | 46 |
| 4.2.5 Proteases | 47 |
| 4.2.6 Glis3 | 47 |
| 4.3 ChemoattractantReceptor Interactions and Cell Migration | 48 |
| 4.3.1 Secretion and Function of Chemoattractants During Myogenesis | 48 |
| 4.3.1.1 Hepatocyte Growth Factor | 48 |
| 4.3.1.2 SDF-1/CXCR4 Axis | 48 |
| 4.3.1.3 IL-4 | 48 |
| 4.3.2 Mouse Odorant Receptor 23 | 49 |
| 4.3.3 Monocyte Chemoattractant Protein-1 | 49 |
| 4.3.4 Progesterone | 49 |
| 4.3.5 Integrins | 50 |
| 4.3.6 The d2 Isoform of Vacuolar ATPase V0 Domain | 50 |
| 4.3.7 Actin Cytoskeleton Regulators | 51 |
| 4.3.8 Mannose Receptor | 51 |
| 4.3.9 Matrix Metalloproteinases | 51 |
| 4.4 Membrane Recognition and Adhesion | 52 |
| 4.4.1 Immunoglobulin Super Family | 52 |
| 4.4.1.1 Orthologs of Drosophila Ig Super Family Proteins | 52 |
| 4.4.1.2 Other Mammalian Ig Proteins Involved in Myoblast Fusion | 52 |
| 4.4.1.3 Izumo | 53 |
| 4.4.1.4 CD47/SIRP-aInteraction | 53 |
| 4.4.2 Cadherins | 54 |
| 4.4.2.1 N-Cadherin | 54 |
| 4.4.2.2 M-Cadherin | 54 |
| 4.4.2.3 E-Cadherin and Cadherin-11 | 54 |
| 4.4.3 Tetraspanins | 55 |
| 4.4.4 Integrins | 55 |
| 4.4.5 Glycosyl-Phosphatidylinositol (GPI)-Anchored proteins | 55 |
| 4.4.6 A Disintegrin And Metalloproteinase (ADAM) | 56 |
| 4.4.7 Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) | 56 |
| 4.5 Fusion Pore Formation and Expansion | 57 |
| 4.5.1 Actin Cytoskeleton | 57 |
| 4.5.2 Lipid Rafts | 59 |
| 4.5.3 A Novel Model of Plasma Membrane Fusion | 59 |
| 4.5.4 Syncytin-1 and -2 | 60 |
| 4.6 Post-fusion Resetting and Cell Survival | 61 |
| 4.6.1 Myoferlin | 61 |
| 4.6.2 Bcl-2 and c-Flip | 61 |
| 4.7 Conclusions | 62 |
| References | 63 |
| 5 Membrane Fusions During Mammalian Fertilization | 74 |
---|
| 5.1 Introduction | 74 |
| 5.2 Surface Remodeling of Gametes Prior to Zona Binding | 76 |
| 5.2.1 The Cumulus-Oocyte Complex in the Oviduct | 76 |
| 5.2.2 Sperm Cell Surface Remodeling | 76 |
| 5.3 Zona Binding and Initiation of the Acrosome Reaction | 77 |
| 5.3.1 Zona Pellucida Contains Acrosome Exocytosis Inducing Binding Sites | 77 |
| 5.3.2 Acrosome Exocytosis |