| Preface | 5 |
---|
| Why are We Writing This Book? | 5 |
| Acknowledgments | 8 |
---|
| Contents | 9 |
---|
| Chapter 1 Pattern Analysis and Statistical Learning | 15 |
---|
| 1.1 Introduction | 15 |
| 1.1.1 Statistical Pattern Recognition | 16 |
| 1.1.2 Pattern Theory | 18 |
| 1.2 Statistical Classification | 20 |
| 1.2.1 Feature Extraction and Selection | 20 |
| 1.2.2 Classifier | 21 |
| 1.3 Visual Pattern Representation | 22 |
| 1.3.1 The Curse of Dimensionality | 23 |
| 1.3.2 Dimensionality Reduction Techniques | 23 |
| 1.4 Statistical Learning | 24 |
| 1.4.1 Prediction Risk | 25 |
| 1.4.2 Supervised, Unsupervised, and Others | 26 |
| 1.5 Summary | 28 |
| References | 28 |
| Chapter 2 Unsupervised Learning for Visual Pattern Analysis | 29 |
---|
| 2.1 Introduction 2.1.1 Unsupervised Learning | 29 |
| 2.1.2 Visual Pattern Analysis | 30 |
| 2.1.3 Outline | 31 |
| 2.2 Cluster Analysis | 31 |
| 2.3 Clustering Algorithms | 35 |
| 2.3.1 Partitional Clustering | 35 |
| 2.3.2 Hierarchical Clustering | 44 |
| 2.4 Perceptual Grouping | 47 |
| 2.4.1 Hierarchical Perceptual Grouping | 47 |
| 2.4.2 Gestalt Grouping Principles | 49 |
| 2.4.3 Contour Grouping | 53 |
| 2.4.4 Region Grouping | 59 |
| 2.5 Learning Representational Models for Visual Patterns | 61 |
| 2.6 Summary | 62 |
| Appendix | 62 |
| References | 62 |
| Chapter 3 Component Analysis | 64 |
---|
| 3.1 Introduction | 64 |
| 3.2 Overview of Component Analysis | 67 |
| 3.3 Generative Models | 68 |
| 3.3.1 Principal Component Analysis | 68 |
| 3.3.2 Nonnegative Matrix Factorization | 79 |
| 3.3.3 Independent Component Analysis | 85 |
| 3.4 Discriminative Models | 89 |
| 3.4.1 Linear Discriminative Analysis | 89 |
| 3.4.2 Oriented Component Analysis | 92 |
| 3.4.3 Canonical Correlation Analysis | 92 |
| 3.4.4 Relevant Component Analysis | 94 |
| 3.5 Standard Extensions of the Linear Model 3.5.1 Latent Variable Analysis | 96 |
| 3.5.2 Kernel Method | 96 |
| 3.6 Summary | 96 |
| References | 97 |
| Chapter 4 Manifold Learning | 99 |
---|
| 4.1 Introduction | 99 |
| 4.2 Mathematical Preliminaries | 103 |
| 4.2.1 Manifold Related Terminologies | 103 |
| 4.2.2 Graph Related Terminologies | 104 |
| 4.3 Global Methods | 106 |
| 4.3.1 Multidimensional Scaling | 106 |
| 4.3.2 Isometric Feature Mapping | 107 |
| 4.3.3 Variants of the Isomap | 108 |
| 4.4 Local Methods | 112 |
| 4.4.1 Locally Linear Embedding | 112 |
| 4.4.2 Laplacian Eigenmaps | 115 |
| 4.4.3 Hessian Eigenmaps | 119 |
| 4.4.4 Diffusion Maps | 121 |
| 4.5 Hybrid Methods: Global Alignment of Local Models | 125 |
| 4.5.1 Global Coordination of Local Linear Models | 125 |
| 4.5.2 Charting a Manifold | 127 |
| 4.5.3 Local Tangent Space Alignment | 129 |
| 4.6 Summary | 129 |
| Appendix | 130 |
| References | 130 |
| Chapter 5 Functional Approximation | 132 |
---|
| 5.1 Introduction | 132 |
| 5.2 Modeling and Approximating the Visual Data | 135 |
| 5.2.1 On Statistical Analysis | 136 |
| 5.2.2 On Harmonic Analysis | 137 |
| 5.2.3 Issues of Approximation and Compression | 138 |
| 5.3 Wavelet Transform and Lifting Scheme 5.3.1 Wavelet Transform | 140 |
| 5.3.2 Constructing a Wavelet Filter Bank | 141 |
| 5.3.3 Lifting Scheme | 143 |
| 5.3.4 Lifting-Based Integer Wavelet Transform | 144 |
| 5.4 Optimal IntegerWavelet Transform | 145 |
| 5.5 Introducing Adaptability into the Wavelet Transform | 147 |
| 5.5.1 Curve Singularities in an Image | 148 |
| 5.5.2 Anisotropic Basis | 148 |
| 5.5.3 Adaptive Lifting-Based Wavelet | 150 |
| 5.6 Adaptive Lifting Structure | 151 |
| 5.6.1 Adaptive Prediction Filters | 151 |
| 5.6.2 Adaptive Update Filters | 153 |
| 5.7 Adaptive Directional Lifting Scheme | 154 |
| 5.7.1 ADL Framework | 155 |
| 5.7.2 Implementation of ADL | 156 |
| 5.8 Motion Compensation Temporal Filtering in Video Coding |
|