: Joakim Sundnes, Glenn Terje Lines, Xing Cai, Bjørn Frederik Nielsen, Kent-Andre Mardal, Aslak Tveito
: Computing the Electrical Activity in the Heart
: Springer-Verlag
: 9783540334378
: 1
: CHF 97.30
:
: Allgemeines, Lexika
: English
: 318
: Wasserzeichen/DRM
: PC/MAC/eReader/Tablet
: PDF

This book describes mathematical models and numerical techniques for simulating the electrical activity in the heart. It gives an introduction to the most important models, followed by a detailed description of numerical techniques. Particular focus is on efficient numerical methods for large scale simulations on both scalar and parallel computers. The results presented in the book will be of particular interest to researchers in bioengineering and computational biology.

Preface5
Table of Contents7
Physiological Background12
1.1 The Electrocardiogram13
1.2 Computer Simulations25
Mathematical Models31
2.1 Modelling the Body as a Volume Conductor31
2.2 A Model for the Heart Tissue34
2.3 Coupling the Heart and the Body42
2.4 Models for the Ionic Current43
2.5 Summary of the Mathematical Model63
Computational Models67
3.1 The Finite Element Method for the Torso67
3.2 The Heart Equations80
3.3 Coupling the Heart and the Torso92
3.4 Numerical Experiments95
Solving Linear Systems108
4.1 Overview108
4.2 Iterative Methods109
4.3 The Conjugate Gradient Method125
4.4 Multigrid132
4.5 Domain Decomposition137
4.6 Preconditioning Revisited142
4.7 The Monodomain Model149
4.8 The Bidomain Model151
Solving Systems of ODEs157
5.1 Simple ODE Solvers157
5.2 Higher-Order Methods162
5.3 Solving Nonlinear Equations168
5.4 Automatic Time Step Control172
5.5 The Cell Model Equations176
Large-Scale Electrocardiac Simulations182
6.1 The Electrocardiac Simulator182
6.2 Requirements for Large-Scale Simulations184
6.3 Introduction to Parallel Computing188
6.4 Two Simple Examples193
6.5 Domain-Based Parallelization198
6.6 Explicit FDM in Parallel204
6.7 Parallel Conjugate Gradient Iterations208
6.8 Domain Decomposition as Parallel Preconditioners214
6.9 Parallelizing Electrocardiac Simulations219
6.10 Simulation on a Realistic Geometry222
6.11 Summary223
Inverse Problems226
7.1 A Simple Example228
7.2 The Classical Inverse Problem of Electrocardiography245
7.3 Identifying a Simplified Source - Computing the Location and Orientation of a Dipole260
7.4 Computing the Size and Location of a Myocardial Infarction278
Color Figures293
Rate Functions and Ionic Currents303
B.1 The Hodgkin-Huxley Model303
B.2 The Noble Model for Purkinje Cells303
B.3 The Beeler-Reuter Model304
Coefficients for the Implicit RK Solvers306
Bibliography307
Index314